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Supplementary information

1 T1D analysis

This section describes the analysis of the T1D data in more detail. Unless otherwise stated, table and
figure numbers refer to the main paper.

A list of the currently most associated SNPs in the 40+ regions now know to be associated with
T1D is shown in Supplementary Table 1, although most of the SNPs which lie outside the MHC region
have a rather small effect on the risk of T1D (Supplementary Figure 1). This section presents details
of the analysis relating T1D risk to all of these known loci. This analysis has been carried out in up
to 9,000 cases and 11,000 controls drawn from throughout Great Britain. This collection is described
elsewhere [1]. Some of these data formed part of the datasets which initially implicated some of the loci,
so that there may be a small exageration of predictive power due to the “winner’s curse”. However, the
inclusion in the model of only those loci which achieved very stringent levels of statistical significance
and were replicated in further samples is a somewhat conservative strategy.

HLA effects

The relationship between HLA loci and the risk of T1D is complex and still somewhat controversial,
with associations reported with HLA-DRB1, HLA-DQB1, HLA-A and HLA-B [2]. The MHC region
is extremely polymorphic and exhibits strong linkage disequilibrium and, as a result, the haplotype
analyses which have dominated the field are complicated by problems of multiplicity. For these reasons,
and because the HLA associations are not a major focus of this review, for the main analysis the HLA
effect will be, as far as possible, captured using the six SNPs chosen in the recent genome-wide association
study [3] using the Illumina 550K array. These SNPs are listed in the lower section of Supplementary
Table 1, and all six were successfully typed in 3,997 of our cases and 3,972 of our controls. A logistic
regression analysis was carried out, including terms in the order

1. “allelic” effects, entering each SNP as a numeric variable coded 0,1 or 2,

2. “dominance” effects, entering binary variables coding SNPs as homozygous or heterozygous, and

3. terms coding statistical interaction between loci.

Inclusion of dominance and interaction terms was decided on the basis of improvement in Akaike’s in-
formation criterion (AIC) [4]. There were large dominance and interaction effects in this analysis as
would be expected given the pattern of association shown, for example, for HLA-DRB1 (Supplementary
Table 2).

Figure 3 shows ROC curves for the predictions using six SNPs and using HLA-DRB1 alone. The
λS attributable to HLA-DRB1, based on the relative risks shown in Supplementary Table 2, is 2.31.
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SNP Band Proximal gene(s)
rs2476601 1p13 PTPN22
rs2816316 1q31
rs3024505 1q32 IL10
rs1534422 2p25
rs917997 2q12 IL18RAP

rs1990760 2q24 IFIH1
rs7574865 2q32 STAT4
rs3087243 2q33 CTLA4

rs333 3p21 CCR5
rs10517086 4p15
rs2069763 4q27 IL2
rs2069762 4q27 IL2
rs6897932 5p13 IL7R

rs11755527 6q15 BACH2
rs9388489 6q22 TNFAIP3

rs10499194 6q23 TNFAIP3
rs6920220 6q23
rs1738074 6q25 TAGAP
rs7804356 7p15 SKAP2
rs4948088 7p12
rs7020673 9p24 GLIS3

rs12722495 10p15 IL2RA
rs2104286 10p15 IL2RA

rs11594656 10p15 IL2RA
rs947474 10p15 DKFZp667F0711

rs10509540 10q23

SNP Band Proximal gene(s)
rs689 11p15 INS

rs4763879 12p13 CD69
rs2292239 12q13 ERBB3
rs3184504 12q24 SH2B3
rs1465788 14q24 C14orf181
rs4900384 14q32
rs3825932 15q25 CTSH

rs12708716 16p13 CLEC16A
rs12444268 16p12 UMOD
rs4788084 16p11
rs7202877 16q23
rs2290400 17q12 GSDMB

rs45450798 18p11 PTPN2
rs478582 18p11 PTPN2
rs763361 18q22 CD226
rs425105 19q13 PRKD2

rs2281808 20p13 SIRPG
rs3788013 21q22 UBASH3A
rs5753037 22q12
rs229541 22q13 C1QTNF6

rs2664170 Xq28 GAB3
rs805294 (MHC)

rs2187668 (MHC)
rs9275313 (MHC)
rs9275388 (MHC)
rs9275425 (MHC)
rs9275614 (MHC)

Supplementary Table 1. SNPs currently most strongly associated with T1D (see
http://www.t1dbase.org). The final group of 6 SNPs were chosen to capture the HLA associations.

Calculation of λS attributable to the six SNPs is problematic because of the strong dominance and
interaction effects. However a polygenic multiplicative model with λS = 3.1 fits the observed ROC
closely and it is reasonable to assume that this approximates the λS explained by this association. This
agrees closely with an estimate of the λS attributable to HLA from estimates of IBD sharing derived
from linkage studies. Using data then available Risch, in 1987 [5], estimated this to be 3.42. More recent
and more extensive data, for 1,967 affected sib–pairs with both parents typed [6] yields an estimate of
λS = 3.07. It would seem, therefore, that rather few SNPs can capture most of the heritability of T1D
risk attributable to HLA associations.

Loci outside the MHC region

At least 40 of the 48 non-MHC SNPs listed in Supplementary Table 1 have been typed for 7,198 of the
available cases and 7,764 of the controls. In these subjects, the small number of failed genotypes were
imputed and, using the same procedure as described above, a logistic regression model was used to predict
disease status. The resulting ROC curve is shown in Figure 4. Also shown is the best fit ROC for a
polygenic multiplicative model, which has λS = 1.48.

Despite the excellent fit of the multiplicative model, the final fitted model involved a number of
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Genotype Cases Controls Odds ratio
X/X 193 1,606 (Reference)
3/X 488 728 5.6
4/X 933 978 7.9
3/3 343 72 39.6
4/4 332 147 18.8
3/4 1,276 185 57.4
Total 3,565 3,716

Supplementary Table 2. T1D risk and HLA–DRB1 genotype. X represents alleles other than 3 or 4.

dominance and interaction terms. For 15 SNPs, the model of multiplicative allelic effects was rejected in
the final model, which also included 174 first order interaction terms. However, the Akaike criterion for
inclusion of extra terms is a lax one (even less demanding than a 5% significance level) and the sample
size is extremely large, and all these additional terms were extremely small. The ROC curve for the model
in which all loci act multiplicatively and each locus has multiplicative allelic effects is indistinguishable
from that shown in Figure 4, giving only minimally reduced prediction (equivalent to λS = 1.46).

Overall prediction

Finally, the regression analysis was repeated using all the 54 SNPs listed in Supplementary Table 1. The
resulting ROC is shown in Figure 5, together with that for the best-fitting ROC for a multiplicative
polygenic model, which has λS = 4.75. This agrees closely with the product of values attributable to
HLA (λS = 3.12) and to other loci (λS = 1.48) — consistent with approximately multiplicative effects
although, again, the final model included many terms representing deviations from a purely multiplicative
model, the larger terms tending to be interactions with HLA loci. Such interactions have been reported
previously, notably an interaction between HLA and PTPN22 [3, 7–10].

Interaction

The analyses presented above all use the logistic regression model, which closely approximates the model of
multiplicative effects of loci upon risk. Many interactions achieved nominal statistically significance (P <
0.05 or better) but were small and had an almost imperceptible impact the ROC curves. The difficulty in
drawing any clear biological interpretation from these interactions is illustrated by the previously reported
interaction between PTPN22 (here represented by the SNP rs2476601) and HLA (here measured by a
risk score calculated from six SNPs). In these data this interaction was significant in a case–only test
(p = 0.004) and negative, indicating that the effect of the PTPN22 SNP is smallest when the HLA risk
is highest. Since this test is a test for departure from the multiplicative model, “effect” in this context
is measured by the relative risk. This is illustrated in the fisrt entries in the cells of Table 1 and the
parameters tested in the formal interaction test are shown as the second entries. A different perspective is
gained when, in the third and fourth entries, we examine the joint effect of both loci and their predictions
for absolute risk. From these tables it is evident that, although the relative effect of PTPN22 is greatest
in the low HLA risk group, its absolute contribution to risk is greatest in the high HLA risk group.

The existence of interaction terms does, however, beg the question whether a better model could be
fitted. Although it is clear from the above example that an additive model for risk is unlikely to fit these
data, this is a possibility that might wish to be considered in other contexts. The standard method for
choosing between additive and multiplicative models is to embed both models in a wider class. Thus,
instead of the logistic regression model, consider the more general model:

g (Pr(Disease); ρ) = β0 + β1x1 + β2x2 · · ·
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where the parameter ρ controls the scale on which risk contributions accumulate. A convenient choice
for the “link” function, g(), is powers of the odds:

g(p; ρ) = 1
ρ

{(
p

1−p)

)ρ
− 1
}

(ρ 6= 0),

= log( p
1−p ) (ρ = 0).

This model reduces to the multiplicative model when ρ = 0 and to the additive model when ρ = +1.
Negative values of ρ represent models in which risks accumulate faster than multiplicatively. This model,
without explicit interaction terms, is fitted for a range of values of ρ and the fit assessed by examining
the (log) likelihood profile. These curves are shown in Supplementary Figure 2 using non-HLA SNPs
(blue curve) and, with a smaller sample size, using all SNPs (red curve). Although a common experience
in epidemiology has been that it can be difficult to discriminate between additive and multiplicative
models for risk, the combination of strong prediction and large sample sizes mean that there is no such
difficulty here. The additive model for risks, ρ = 1, is such a poor fit that it could not be fitted with
the available software, and the range of supported models differ only slightly from the multiplicative
model, ρ = 0 (conventional 95% confidence limits for ρ correspond approximately with values of ρ for
which the log likelihood ratio is greater than -2). In the case of the model for all SNPs, this excludes the
multiplicative model, the best choice being consistent with the joint effect of two loci being being more
than the product of their single effects. However this is entirely due to dominance and interaction within
the MHC region. When these terms are included in the model, the pattern that emerges (green curve) is
that there is a highly significant, though small, shift towards a model in which joint effects are slightly
less than the product of single effects. This would suggest that smaller relative risks will tend to be
observed for new loci in high risk populations than in low risk populations, and this has been advanced
as an explanation for the observation of rather lower effect sizes in multi-case families than in sporadic
cases [3, 11]. However, it should be stressed that the shift away from the multiplicative model is very
small and the predictions of the best fit model are virtually indistinguishable from that of the logistic
regression model.

Heritability

The analysis presented above suggests that known T1D susceptibility loci account for a sibling relative
recurrence risk, λS , of just under 5. This compares with the figure of 15 widely quoted in the literature
(see, for example, Risch [5]). There are at least three possible explanations for this discrepancy:

1. a large fraction of the genetic influences on T1D have yet to be discovered, or

2. reported values of λS are biased, or

3. observed values of λS are partially due to shared environmental influences.

If λS attributable to genetic influences really is 15, then yet undiscovered loci would, together, need
to have an effect at least as strong as HLA and three times as strong as that of all the remaining
known loci. There must be many undiscovered loci associated with T1D. The majority of these will have
even smaller effects than those already discovered. A few may have larger effects, but have not been
discovered because they are not tagged by the current generation of genome-wide SNP chips. This latter
group includes common copy number variants, not all of which will be tagged, and low-frequency variants.
There is considerable interest in copy number variation at present, and it will not be too long before we
know whether common copy number variants play a role in T1D. Likewise, advances in high-throughput
sequencing will allow us to search for low frequency variants, albeit not yet on a genome-wide scale.
However the now extensive linkage evidence would suggest that new disease susceptibility loci are not
sufficiently strong, or sufficiently concentrated in specific regions, to yield large local contributions to λS .
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A sobering example is that a variant with frequency of 1% conferring a relative risk of 2 only generates a
λS of 1.01 so that around ten such loci in a gene would be required to generate a λS of 1.1. Undoubtedly,
lower frequency disease susceptibility variants will be present in regions already discovered, and these will
enhance their effects. However, in a recent study of ten candidate genes, Nejentsev et al. [12] found low
frequency variants with large effects in only one gene. To summarise, if λS = 15 is an accurate estimate
of the heritability of T1D much, if not most, of the remaining variation will be distributed as small effects
or rare variants throughout the genome. The cataloguing of all this variation would be a daunting task,
even if suitable methodology were available.

It could be, however, that λS has been exaggerated. Perhaps the most comprehensive study of recur-
rence risk in siblings of T1D cases has been carried out in Finland [13]. This suggested that cumulative
incidence by age 50 in siblings of a case of T1D was 6.9%, of which just over 3% was by age 15. Compa-
rable population data is not readily available, but a review in 1993 [14] quoted the incidence rate at ages
0-15 in Finland as 35.3 per 100,000 person-years, yielding a cumulative incidence by age 15 of 0.53%.
These figures would suggest a value for λS closer to 6 than to 15. However, there are strong secular trends
in the incidence rate and a more careful analysis would be necessary to obtain an accurate estimate.

An alternative measure of the heritability of T1D is the ratio of incidences between monozygotic
(MZ) and dizygotic (DZ) twins. Arguably, this measure is less contaminated by the effects of shared
environment, although an effect of shared placenta in MZ twins is not beyond the bounds of possibility.
A recent study in Finland [15] estimated the probandwise concordance in MZ twins, which can be taken
as an estimate of λMZ , at 42.9% while the same index for DZ twins was 7.4%. This yields a ratio of 5.8.
An earlier study of Danish twins [16] estimated crude probandwise concordance rates as 53% in MZ twins
and 11% in DZ twins. An analysis which estimated cumulative incidence by age 35 yielded, respectively
70% and 13%. Thus the Danish data are consistent with a λMZ : λDZ ratio of around 5. Numbers are
small in these studies, but together they are consistent with the λMZ : λDZ ratio being in the region 5 to
6. Under the polygenic multiplicative model, the ratio of recurrence risks of MZ to DZ twins would be
the same as λS (see below), although it will be rather less under models with strong dominance effects.
Thus, the linkage analysis referred to above estimates the λMZ : λDZ ratio attributable to HLA to be
2.10 (compared with 3.07 for λS) which, assuming that non-HLA and HLA effects combine approximately
multiplicatively, would suggest that non-HLA loci account for a λMZ : λDZ ratio of between 5/2.1 = 2.4
and 6/2.1 = 2.9. Assuming that the polygeneic multiplicative model is a reasonably accurate model for
the effects of all the non-HLA loci, the λS attributable to these will be approximately the same as their
contribution to λMZ : λDZ . Thus, we might expect the overall λS to lie between 3.07 × 2.4 = 7.4 and
3.07 × 2.4 = 8.9 — a slightly larger estimate than given by the sibling studies, but still substantially
smaller than the value of 15 often quoted. However, all estimate remain appreciably above the value
of 4.75 currently explained. It is entirely plausible that disease susceptibility variants which are either
too rare of have too small an effect size to be detected by current epidemiological methods explain the
residual heritability.

2 The ROC curve and λS in the polygenic multiplicative model

This derivation closely parallels that of Pharaoh et al. [17], although here the relationship with logistic
regression models is rather more explicit.

Let x`; ` = 1 . . . L denote the number of copies (0, 1 or 2) of loci carried by an individual at L loci.
The fully multiplicative model in which each copy of an allele at locus ` multiplies risk by expβ` and
effects of different loci combine multiplicatively has

Pr(Disease|Genotype) = eη,

η = β0 +
L∑
`=1

β`x`.
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When Pr(Disease|Genotype) is small, this is approximately the same as the logistic regression model,
which has the advantage that the parameters measuring effects of genotype are constant (in expectation)
under case–control sampling. If L is large, the distribution of the risk scores, η, in the population will be
approximately normal, let us say with mean µ and standard deviation σ. Then it is easily shown that
the distribution of the risk score in cases of disease is also normal with standard deviation σ, but with
mean (µ+ σ2). Given σ, this defines the ROC since this does not depend on µ.

The population risk is given by the expectation of eη in the population, which may be shown to be

K = EI (eη) = exp(µ+ σ2/2).

Now consider two potentially related individuals in this population, and denote their risk scores by η1
and η2. (η1, η2) is drawn from a bivariate normal population in which both marginal means are µ, both
marginal standard deviation are σ, and the correlation coefficient is ρ. The probability that they are
both cases is given by the expectation of eη1+η2 , which can be shown to be

EI
(
eη1+η2

)
= exp(2µ+ σ2 + ρσ2).

The relative recurrence risk for relatives of type R is then given by division of this expression by K2:

λR =
1
K2

exp(2µ+ σ2 + ρRσ
2) = exp(ρRσ2)

where ρR is the correlation between risk scores, η, for relatives of type R. In outbred populations this
correlation is simply twice the kinship coefficient. Thus the logarithm of the relative recurrence risk is
directly proportional to the kinship coefficient1. The implied ROC for given λS can be calculated by
noting that ρS = 0.5, so that

σ2 = 2 log λS .

For twin recurrence risks, these results yield:

λMZ = exp(σ2),

λDZ = exp
(

1
2
σ2

)
so that

λMZ

λDZ
= exp

(
1
2
σ2

)
= λS .

3 Entropy and synergy

In information theory, entropy is a measure of uncertainty associated with a probability distribution.
If a random variable, D, takes on possible values di, . . . , dn, then the entropy measure of uncertainty
concerning D is

H(D) =
n∑
i=1

P (D = di) logP (D = di).

In the context of this paper, D is disease status, taking on just two values — present or absent. If D is
related to a second variable, for example a genotype, G, then knowing the value of this variable (g say)
will reduce the remaining uncertainty to

n∑
i=1

P (D = di|G = g) logP (D = di|G = g).

1From this result it also follows that, when two loci act multiplicatively (so that there effects are additive on th elog risk
scale), they also contribute multiplicatively to recurrence risks
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The conditional entropy is the expectation, or average, of this over all possible values of G:

H(D|G) =
∑
g

P (G = g)
n∑
i=1

P (D = di|G = g) logP (D = di|G = g).

The amount by which the entropy for D is reduced by knowledge of G provides a measure of the infor-
mation gain:

IG = H(D)−H(D|G).

In commonly used definitions of “synergy” of genes based on entropy (for example [18, 19]), synergy
between two genes, G1 and G2, is defined in terms of the difference between the information gain from
both genes and the sum of the information gains from each gene individually:

{H(D)−H(D|G1, G2)} − {H(D)−H(D|G1)} − {H(D)−H(D|G2)} =
−H(D|G1, G2) +H(D|G1) +H(D|G2)−H(D)

The idea generalises to provide definitions of higher order synergy. This measure is superficially appealing
and can be computed very rapidly, but has several difficulties. Firstly, it is not necessarily positive so
that the total information contributed by G1 and G2 could be less than the sum of their individual
contributions; it is an odd form of synergy in which to whole is less than the sum of its parts! A second
problem is that the definition is not invariant under case–control sampling. Both of these difficulties are
illustrated by the case where G1 and G2 are in linkage equilibrium and act multiplicatively on the risk
of disease. Then, in a cohort study, G1 and G2 are marginally independent and, for a rare disease, they
are also approximately independent conditional upon D. Thus, because the measure of synergy can also
be expressed as

{−H(G1, G2|D) +H(G1|D) +H(G2|D)} − {−H(G1, G2) +H(G1) +H(G2)} ,

the difference between entropy measures of conditional and marginal association between G1 and G2, this
is approximately zero. In a case–control study, however, G1 and G2 remain conditionally independent
but are no longer marginally independent, and the above measure of synergy becomes negative.

Although proponents of this approach stress that it is model free, the most important difficulty with
it is that it cannot fail to beg the question: what is “no synergy”? If we are to assert that two genes
have a synergistic action we must define what we mean by saying that they are not synergistic; we must
have a null hypothesis. The definition of synergy above, when set to zero, does not lead to any simply
interpretable pattern of risks except in very special cases. While maintaining an information-theoretic
approach, these difficulties can be resolved by tackling the problem from the standpoint of the null
hypothesis. How much uncertainty about D would remain if we knew the two-way relationships between
D and G1 and D and G2 but did not know the complete relationship between all three variables? If this
could be defined, then the amount by which entropy is reduced by knowing the joint effect of the two
genes provides a more satisfactory definition of synergy. Good [20] argued that the former quantity is
the maximum value that the entropy can take over all possible three way distributions, P (D,G1, G2),
given the known two-way marginal distributions P (D,G1), P (D,G2), and P (G1, G2). The new measure
of synergy of information would then become:

−H(D|G1, G2) + Max {H(D|G1, G2) |P (D,G1), P (D,G2), P (G1, G2)}

Good proposed the principle of maximum entropy as a general principle for generating null hypotheses,
but discussed the case of log–linear models for contingency tables in some detail. The logistic regression
model for a binary outcome (here disease status, D) and discrete predictor variables (genes, G1, G2) is a
special case of such models and Good’s results show that the null hypothesis leading to maximum entropy
is precisely the model of no interaction between G1 and G2 in the logistic regression model for D. Thus,
this arguably more satisfactory information theoretic approach effectively equates synergy of information
with interaction in the logistic model.
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Supplementary Figure 1. Effect sizes for non-HLA SNP associations with T1D. The figure shows
relative risk between the two homozygous genotypes. These estimates are based on data from up to
9,338 case and 11,303 controls, and use the model of multiplicative allelic effects when it fits the data
and on the 2 df (genotype) model otherwise. Findings shown as “unpublished” are, at the time of
writing, in press or submitted for publication. Gene names refer to the nearest gene within the region of
LD surrounding the most associated SNP.
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Supplementary Figure 2. Log likelihood profiles for the scale choice parameter, ρ. The blue curve
refers to the model for the non-HLA SNPs in Supplementary Table 1 while the red curve is for the
model for all SNPs. The green curve is for all SNPs but allows for dominance and interaction within the
MHC region. Log likelihoods are expressed relative to the maximum likelihood estimate. The vertical
line at ρ = 0 represents the multiplicative model; values to the right of this represent models in which
effects accumulate less than multiplicatively while values to the left of the line represent accumulation
more than multiplicatively.


